33 research outputs found

    Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems

    Get PDF
    In this paper, we study systems that allocate different types of scarce resources to heterogeneous allocatees based on predetermined priority rules-the U.S. deceased-donor kidney allocation system or the public housing program. We tackle the problem of estimating the wait time of an allocatee who possesses incomplete system information with regard, for example, to his relative priority, other allocatees' preferences, and resource availability. We model such systems as multiclass, multiserver queuing systems that are potentially unstable or in transient regime. We propose a novel robust optimization solution methodology that builds on the assignment problem. For first-come, first-served systems, our approach yields a mixed-integer programming formulation. For the important case where there is a hierarchy in the resource types, we strengthen our formulation through a drastic variable reduction and also propose a highly scalable heuristic, involving only the solution of a convex optimization problem (usually a second-order cone problem).We back the heuristic with an approximation guarantee that becomes tighter for larger problem sizes. We illustrate the generalizability of our approach by studying systems that operate under different priority rules, such as class priority. Numerical studies demonstrate that our approach outperforms simulation. We showcase how our methodology can be applied to assist patients in the U.S. deceased-donor kidney waitlist. We calibrate our model using historical data to estimate patients' wait times based on their kidney quality preferences, blood type, location, and rank in the waitlist

    Decision Rule Approximations for Dynamic Optimization under Uncertainty

    No full text
    Dynamic decision problems affected by uncertain data are notoriously hard to solve due to the presence of adaptive decision variables which must be modeled as functions or decision rules of some (or all) of the uncertain parameters. All exact solution techniques suffer from the curse of dimensionality while most solution schemes assume that the decision-maker cannot influence the sequence in which the uncertain parameters are revealed. The main objective of this thesis is to devise tractable approximation schemes for dynamic decision-making under uncertainty. For this purpose, we develop new decision rule approximations whereby the adaptive decisions are approximated by finite linear combinations of prescribed basis functions. In the first part of this thesis, we develop a tractable unifying framework for solving convex multi-stage robust optimization problems with general nonlinear dependence on the uncertain parameters. This is achieved by combining decision rule and constraint sampling approximations. The synthesis of these two methodologies provides us with a versatile data-driven framework, which circumvents the need for estimating the distribution of the uncertain parameters and offers almost complete freedom in the choice of basis functions. We obtain a-priori probabilistic guarantees on the feasibility properties of the optimal decision rule and demonstrate asymptotic consistency of the approximation. We then investigate the problem of hedging and pricing path-dependent electricity derivatives such as swing options, which play a crucial risk management role in today鈥檚 deregulated energy markets. Most of the literature on the topic assumes that a swing option can be assigned a unique fair price. This assumption nevertheless fails to hold in real-world energy markets, where the option admits a whole interval of prices consistent with those of traded instruments. We formulate two large-scale robust optimization problems whose optimal values yield the endpoints of this interval. We analyze and exploit the structure of the optimal decision rule to formulate approximate problems that can be solved efficiently with the decision rule approach discussed in the first part of the thesis. Most of the literature on stochastic and robust optimization assumes that the sequence in which the uncertain parameters unfold is independent of the decision-maker鈥檚 actions. Nevertheless, in numerous real-world decision problems, the time of information discovery can be influenced by the decision-maker. In the last part of this thesis, we propose a decision rule-based approximation scheme for multi-stage problems with decision-dependent information discovery. We assess our approach on a problem of infrastructure and production planning in offshore oil fields

    Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making

    Full text link
    In recent years, automated data-driven decision-making systems have enjoyed a tremendous success in a variety of fields (e.g., to make product recommendations, or to guide the production of entertainment). More recently, these algorithms are increasingly being used to assist socially sensitive decision-making (e.g., to decide who to admit into a degree program or to prioritize individuals for public housing). Yet, these automated tools may result in discriminative decision-making in the sense that they may treat individuals unfairly or unequally based on membership to a category or a minority, resulting in disparate treatment or disparate impact and violating both moral and ethical standards. This may happen when the training dataset is itself biased (e.g., if individuals belonging to a particular group have historically been discriminated upon). However, it may also happen when the training dataset is unbiased, if the errors made by the system affect individuals belonging to a category or minority differently (e.g., if misclassification rates for Blacks are higher than for Whites). In this paper, we unify the definitions of unfairness across classification and regression. We propose a versatile mixed-integer optimization framework for learning optimal and fair decision trees and variants thereof to prevent disparate treatment and/or disparate impact as appropriate. This translates to a flexible schema for designing fair and interpretable policies suitable for socially sensitive decision-making. We conduct extensive computational studies that show that our framework improves the state-of-the-art in the field (which typically relies on heuristics) to yield non-discriminative decisions at lower cost to overall accuracy.Comment: 33rd AAAI Conference on Artificial Intelligence, 201

    Learning Optimal Classification Trees Robust to Distribution Shifts

    Full text link
    We consider the problem of learning classification trees that are robust to distribution shifts between training and testing/deployment data. This problem arises frequently in high stakes settings such as public health and social work where data is often collected using self-reported surveys which are highly sensitive to e.g., the framing of the questions, the time when and place where the survey is conducted, and the level of comfort the interviewee has in sharing information with the interviewer. We propose a method for learning optimal robust classification trees based on mixed-integer robust optimization technology. In particular, we demonstrate that the problem of learning an optimal robust tree can be cast as a single-stage mixed-integer robust optimization problem with a highly nonlinear and discontinuous objective. We reformulate this problem equivalently as a two-stage linear robust optimization problem for which we devise a tailored solution procedure based on constraint generation. We evaluate the performance of our approach on numerous publicly available datasets, and compare the performance to a regularized, non-robust optimal tree. We show an increase of up to 12.48% in worst-case accuracy and of up to 4.85% in average-case accuracy across several datasets and distribution shifts from using our robust solution in comparison to the non-robust one.Comment: 47 pages, 11 figure

    Social Network Based Substance Abuse Prevention via Network Modification (A Preliminary Study)

    Full text link
    Substance use and abuse is a significant public health problem in the United States. Group-based intervention programs offer a promising means of preventing and reducing substance abuse. While effective, unfortunately, inappropriate intervention groups can result in an increase in deviant behaviors among participants, a process known as deviancy training. This paper investigates the problem of optimizing the social influence related to the deviant behavior via careful construction of the intervention groups. We propose a Mixed Integer Optimization formulation that decides on the intervention groups, captures the impact of the groups on the structure of the social network, and models the impact of these changes on behavior propagation. In addition, we propose a scalable hybrid meta-heuristic algorithm that combines Mixed Integer Programming and Large Neighborhood Search to find near-optimal network partitions. Our algorithm is packaged in the form of GUIDE, an AI-based decision aid that recommends intervention groups. Being the first quantitative decision aid of this kind, GUIDE is able to assist practitioners, in particular social workers, in three key areas: (a) GUIDE proposes near-optimal solutions that are shown, via extensive simulations, to significantly improve over the traditional qualitative practices for forming intervention groups; (b) GUIDE is able to identify circumstances when an intervention will lead to deviancy training, thus saving time, money, and effort; (c) GUIDE can evaluate current strategies of group formation and discard strategies that will lead to deviancy training. In developing GUIDE, we are primarily interested in substance use interventions among homeless youth as a high risk and vulnerable population. GUIDE is developed in collaboration with Urban Peak, a homeless-youth serving organization in Denver, CO, and is under preparation for deployment

    Learning Optimal Prescriptive Trees from Observational Data

    Full text link
    We consider the problem of learning an optimal prescriptive tree (i.e., an interpretable treatment assignment policy in the form of a binary tree) of moderate depth, from observational data. This problem arises in numerous socially important domains such as public health and personalized medicine, where interpretable and data-driven interventions are sought based on data gathered in deployment -- through passive collection of data -- rather than from randomized trials. We propose a method for learning optimal prescriptive trees using mixed-integer optimization (MIO) technology. We show that under mild conditions our method is asymptotically exact in the sense that it converges to an optimal out-of-sample treatment assignment policy as the number of historical data samples tends to infinity. Contrary to existing literature, our approach: 1) does not require data to be randomized, 2) does not impose stringent assumptions on the learned trees, and 3) has the ability to model domain specific constraints. Through extensive computational experiments, we demonstrate that our asymptotic guarantees translate to significant performance improvements in finite samples, as well as showcase our uniquely flexible modeling power by incorporating budget and fairness constraints

    ODTlearn: A Package for Learning Optimal Decision Trees for Prediction and Prescription

    Full text link
    ODTLearn is an open-source Python package that provides methods for learning optimal decision trees for high-stakes predictive and prescriptive tasks based on the mixed-integer optimization (MIO) framework proposed in Aghaei et al. (2019) and several of its extensions. The current version of the package provides implementations for learning optimal classification trees, optimal fair classification trees, optimal classification trees robust to distribution shifts, and optimal prescriptive trees from observational data. We have designed the package to be easy to maintain and extend as new optimal decision tree problem classes, reformulation strategies, and solution algorithms are introduced. To this end, the package follows object-oriented design principles and supports both commercial (Gurobi) and open source (COIN-OR branch and cut) solvers. The package documentation and an extensive user guide can be found at https://d3m-research-group.github.io/odtlearn/. Additionally, users can view the package source code and submit feature requests and bug reports by visiting https://github.com/D3M-Research-Group/odtlearn.Comment: 7 pages, 2 figure
    corecore